
Deep Nodes - creating 3D objects with node-trees
Andreas Reich∗

logophoman@gmail.com
a.reich@hs-furtwangen.de

Hochschule Furtwangen University
Weilheim Teck, Deutschland

Louis Trouillier
louis.jakob.trouillier@hs-

furtwangen.de
Hochschule Furtwangen University

Pforzheim, Deutschland

Matthias Mühl
matthias.muehl@hs-furtwangen.de
Hochschule Furtwangen University

Furtwangen im Schwarzwald
Deutschland

Marcel Bauer
m.bauer@hs-furtwangen.de

Hochschule Furtwangen University
Bühl, Deutschland

Lea Stegk
lea.marie.stegk@hs-furtwangen.de
Hochschule Furtwangen University

Furtwangen, Deutschland

Figure 1: Excerpt form the “DeepNodes” 3D editor created during the project

ABSTRACT
We introduce DeepNodes - a novel node-based 3D modeling engine
which we built to be used by human modelers as well as machine
learning algorithms. Common 3D modeling engines are designed
to be only used by humans, whereas DeepNodes aims to automate
3D modeling processes to help human 3D artists save time. This
paper gives an overview over the editor, its techniques and its
design. We built DeepNodes to serve as a basis for further research,
especially concerning machine learning. By concatenating humanly
pre-programmed functions of the editor with neural networks,
complex 3D models could be re-modeled automatically.

CCS CONCEPTS
• Human-centered computing → User interface design; • Soft-
ware and its engineering→ Software design engineering.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Reich, MuC’21 Workshops, Hamburg, Deutschland
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

KEYWORDS
nodes, node-trees, modeling, automation of modeling, node editor,
machine learning, user interface design, human-computer interac-
tion, software engineering

ACM Reference Format:
Andreas Reich, Louis Trouillier, Matthias Mühl, Marcel Bauer, and Lea Stegk.
2021. Deep Nodes - creating 3D objects with node-trees. In Hamburg ’21:
Digitaler Wandel im Fluss der Zeit, September 06–09, 2021, Hamburg. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Many modern computer programs, especially 3D modeling engines,
offer users to interact with their software via so-called nodes. Nodes
visually represent a sequence of computer code bundled together
and are called function. Nodes can be visually connected with lines
resulting in so-called node trees. They are the concatenation of
multiple individual functions. Therefore, the underlying sequences
of computer code of multiple functions get concatenated as well
and therefore form a new program or another high-level function.
Node-based 3D modeling engines allow users to create 3D meshes
through combining sequences of nodes. This means that a set of
functions is combined to a program that generates a desired 3D
mesh.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

Reich, MuC’21 Workshops, Hamburg, Deutschland Reich and Trouillier, et al.

The core idea behind DeepNodes was to automatize the process
of 3D modeling by automatically generating node trees with rein-
forcement learning. Therefore, our editor is designed to serve as a
basis for implementing machine learning algorithms in the future.

2 NODES AND NODE-TREES
We refer to nodes as so-called functions. Functions, often also re-
ferred to as methods, are collections of executable computer code
which perform a certain task. [1] Normally a node visually rep-
resents a function in a visual editor of software. Nodes generally
are atomic elements of node trees. Node trees are a collection of
nodes that are usually connected with each other like a graph. They
can also be utilized as single nodes themselves and are thereby
describing a high-level function. They can also be referred to as
programs. Connections between nodes determine the execution
order of nodes and therefore also the procedure of a resulting pro-
gram. Most nodes have multiple inputs and outputs whereas some
nodes only have inputs or outputs. The inputs and outputs of a
node represent the inputs and outputs of a corresponding function.
The following figure shows a simple node tree.

Figure 2: A simplemathematical operationwith nodes in the
node editor

Visual programming with node trees is increasing in popularity
since, according to Blackwell, they are easier to understand than
textual code. Research investigating on visual programming lan-
guages is motivated by the assumption that visual languages bear
a closer relationship to the mental representation of a programmer
than text based programming languages [2]. Using nodes helps pro-
grammers to visualize program routines, concepts and structures.
They help them to get an overview over main tasks while still being
able to focus on details [3].

3 NOVELTY OF THE APPROACH
Contrary to many other state of the art 3D modeling engines that -
besides many other functions - offer 3D modeling nodes, DeepNodes
concentrates on providing 3D modeling nodes. In comparison, the
software Blender is an example of a node editor that uses node
systems or node trees specifically to design materials of 3D objects
and to connect them with textures [4]. Maya from Autodesk Inc. in
turn uses its built-in node editor primarily for 3D character rigging
and recommends using the editor less for creating materials or
shaders [5].

Therefore, the DeepNodes 3D editor profits from its unique char-
acteristic by focusing on modeling and creating 3D objects using
node trees. Furthermore, common features like transforming 3D
objects and changing the color of materials are also performed via
nodes.

Independent of the current state of the node editor, which cur-
rently only allows manual modeling, our long term goal is to accel-
erate and automate the generation of node trees by using machine
learning within our editor.

4 CREATION OF THE ENGINE
Before we decided to develop our own editor we investigated other
state-of-the-art 3D-engines. Building a machine learning solution
on top of the prevalent 3D-engines proved to be very complex
though, especially because of a lack of documentation concerning
node programming throughout all major 3D-engines. To have full
control over a 3D engine environment we decided to create one
of our own. We created the “DeepNodes” 3D editor which one can
download and test here. The editor is completely node-based and
capable of creating and manipulating 3D meshes via nodes. We
implemented basic 3D transformation operations in order to be
able to translate, rotate, and scale meshes. In order to create the
software we utilized the following frameworks.

4.1 QT and PyQt
Qt is a C++ based cross-platform open-source toolkit for creating
GUIs. PyQt is a binding of the toolkit for Python, implemented
as a plug-in for Python. It is developed by the British company
Riverbank Computing. and is available under a variety of licenses
including the GNU General Public License (GPL) and a commercial
license [6]. PyQt implements over 6,500 classes, functions, and
methods. Our node editor heavily relies on the toolkit, especially
its user interface classes and widgets.

4.2 OpenGL
OpenGL (Open Graphics Library) is a specification for a cross-
platform and cross-language programming interface (API) for the
development of 2D and 3D computer graphics applications. The
OpenGL standard describes around 250 commands that allow the
representation of complex 3D scenes in real-time [7].

4.3 Qt3D
Qt3D is a Qt module, providing support for 2D and 3D rendering.
Furthermore it allows to manipulate meshes and perform transfor-
mation operations. It is written in C++ but can be accessed through
the PyQt3D Module. The module is based on OpenGL [8]. We make
use of the OpenGL functionalities and render pipelines in our editor
through Qt3D.

4.4 Node Classes
In our engine we differentiate between 5 node classes.

• Math operations - numbers, constants, calculations
• Basic shapes - cubes, spheres, planes etc.
• Transform operations - translate, rotate, scale 3D objects
• Material operations - coloring 3D objects
• Entities - visualize 3D objects

5 DESIGN AND USER EXPERIENCE
To investigate the editors potential target groups, we conducted
a survey [9]. Through the analysis of this survey we learned that

http://deep-nodes.de/

Deep Nodes - creating 3D objects with node-trees Reich, MuC’21 Workshops, Hamburg, Deutschland

our participants are divided into two subgroups, each focusing on
different aspects. The first subgroup are beginners in the field of 3D
design and the use of node editors; the other subgroup consists of
experienced 3D design experts. Based on the results of the survey,
we also concluded that the graphical user interfaces as well as the
usability of several frequently used 3D engines could be enhanced.
This is particularly evident in the responses of many survey partic-
ipants, who state that the GUI of the engine they use is partially or
heavily overloaded. A further knowledge gain are the statements
of some survey participants who find the documentation of the
functional range of many 3D engines to be inadequate. From this
we conclude that the documentation of our 3D modeling engine
must be comprehensive and detailed. Therefore, we derive that
the implementation of our 3D modeling engine must satisfy the
demands of users, especially concerning a lightweight GUI, in order
to deliver added value compared to existing, similar software.

5.1 Color spectrum
The color spectrum of the editor especially targets the subgroup of
“beginners” by delivering clean, differentiable and complementary
colors that are easy to understand intuitively. These colors can also
easily be understood by “experts”. All colors are optimized for the
usage in a dark-mode setting.

We developed the following colour schemes, from which the five
main colour shades (HEX colour codes 61CF60; B3FA8B; C8E1FF;
7D96EB; 6455CE) were defined. In order to construct a flexible color
palette, additional tertiary colour shades were created in between,
which were primarily used for contrast and complementing the
previously mentioned colour shades.

Figure 3: The color spectrum of the 3D modeling engine

5.2 Typography
The visual communication of the 3Dmodeling engine uses the fonts
“Work Sans”, designed by Wei Huang [10], and “PT Serif”, designed
by “ParaType” [11] for the text that appears in the Graphical User
Interface. Both fonts are published on “Google Fonts”. We use the
sans serif font “Work Sans” for headlines, body text, description
text and smaller font sizes; in sub-headlines the roman font “PT
Serif” was used as a typographic contrast.

5.3 Icons and Logotype
We created several icon categories for the engine, which symbolize
the functions (“nodes”) of the engine. A distinction is made between
core operations, elementary for creating 3D objects, object opera-
tions such as transform, zoom, move, rotate and mesh operations
like “Cube-Mesh” or “Sphere-Mesh”. Finally, operations such as
“Number” or “Subtract” complete the scope of operations of the 3D
modeling engine.

Figure 4: A summary of the icons designed for the graphical
user interface

The figurative part of the logotype of our 3D modeling engine is
formed by a node and a cube; the sockets, i.e. the connections to a
node, are highlighted on the sides of the form and accentuated in
violet color. The textual part of the logotype has a color contrast
between the word parts to emphasize the deep learning focus of
the project. The visual style of the logo is primarily designed for
dark graphical user interfaces since the editor utilizes dark design
as well.

Figure 5: The logotype.

5.4 Graphical User Interface
The Graphical User Interface (GUI) is the result of the combined
thought process explained in the previous sub-chapters based on
the survey results. It consists of easy-to-understand icons, which
can be converted into nodes via drag-and-drop from the “Node Bar”
positioned on the left interface edge (Fig. 6, red frame). The node-
editing area has a grid background and the nodes can be arranged
on it without any limitations (Fig. 6, green frame). Furthermore,
nodes can be connected and connections between nodes can be
deleted. The 3D viewport shows 3D objects created by nodes. It
offers users to inspect 3D objects by rotating, panning and zooming
around the object (Fig. 6, blue frame).

Users can open up new or existing files, save the current file or
exit the application via the “File” menu item (Fig. 7, red frame). Basic
operations like undo, redo, cut, copy and paste can be performed via
shortcuts or the “Edit” menu item (Fig. 7, blue frame). The window

Reich, MuC’21 Workshops, Hamburg, Deutschland Reich and Trouillier, et al.

Figure 6: An excerpt from the node editor GUI.

Figure 7: Menu entries with included sub entries.

can be arranged by users by hiding different interface sections like
the “Node Bar” menu or the 3D viewport. The node-editing area
can be tiled or cascaded to allow users to drag it around via the
“Window” menu item (Fig. 7, green frame). Nodes can be dragged
around and arranged at the will of users. The node-view enables
users to zoom in and out to always get their desired view on node
trees.

5.5 Key benefits of our human-computer
interaction

Conventional software that utilizes node editors usually does not
have the functionality to design complete 3D objects via node trees.
Our 3D modeling engine provides the basis for implementing a
neural network architecture into themodeling process of 3D objects.
In this way a large number of intermediate steps that a 3D designer
or engineer has to perform could be automated. This represents a
step forward in the approach of conventional 3D object modeling.

Instructions on how to use our 3D modeling engine can be found
in our publicly available documentation [12]. The most important
aspect during the creation process of the documentation was, as
already explained in 5 - “Design and User Experience”, the advan-
tage over other common software documentations by providing
users with a visually comprehensible and written explanation of
the basics of our software, e.g. the explanation of “nodes” and their
usage. Therefore even inexperienced users can start using our node
editor.

6 PERSPECTIVE ON FUTUREWORK
Currently the DeepNodes editor is capable of performing simple
mesh generation andmanipulation tasks by manually building node

trees. In the future more complex operations could be added to en-
hance the capabilities of the engine. We created the editor in a way
that one could expand it to work with machine learning algorithms
and investigate if and how node-trees and the resulting 3D models
could be automatically generated through neural networks. During
the project, we investigated state of the art machine learning princi-
ples such as supervised, unsupervised and reinforcement learning
[13]. After especially evaluating supervised learning for our project,
we focused our research on reinforcement learning, since we found
it to be the most promising approach.

6.1 Open tasks and questions
An open question is whether machine learning, especially reinforce-
ment learning can be utilized to generate node trees that generate
3D meshes. Furthermore, finding an efficient algorithm that is com-
patible with other modern reinforcement learning solutions and
that can handle the problem of reliable node-tree generation is a
difficult task. Our work and editor can serve as a basis for other
researchers that want to conduct research in the area of automated
creation of complex programs/3D-meshes via generating node-trees
with machine learning.

6.2 Prospect
Creating an efficient algorithm for node-tree generation concerning
3D models would solve a task with high practical value for the
3D industry since re-modeling meshes with nodes would simplify
many VFX tasks. Moreover, such an algorithm could enhance the
photogrammetry pipeline because dense point clouds could be
reverted into lightweight, editable node-based models. Furthermore,
findings in the area of automatic 3D modeling with node-trees and
machine learning could be important for other areas of research,
especially the field of neural program synthesis.

REFERENCES
[1] Qin S. Ait-Ameur Y. Formal Methods and Software Engineering. Springer Nature,

2019.
[2] Blackwell A. F. Metacognitive theories of visual programming. what do we think

we are doing?: Proceedings ieee symposium on visual languages. 1996.
[3] Petre M. Blackwell A. F. Mental imagery in program design and visual program-

ming. 1999.
[4] Blender.org. Introduction: Node editor. https://docs.blender.org/manual/en/2.79/

editors/node_editor/introduction.html, 2017.
[5] Autodesk.Help. Autodesk knowledge network: Node editor. https:

//knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/
cloudhelp/2019/ENU/Maya-Basics/files/GUID-23277302-6665-465F-8579-
9BC734228F69-htm.html, 2019.

[6] Willman J. M. Beginning PyQt: A Hands-on Approach to GUI Programming. Apress,
2020.

[7] The Khronos Group Inc. Opengl overview. https://www.opengl.org/about/#1,
2020.

[8] The Qt Company Ltd. Qt documentation: Qt3d. https://doc.qt.io/qt-5/qt3d-
index.html, 2020.

[9] Bauer M. Survey deepnodes. https://docs.google.com/forms/d/e/
1FAIpQLSfVbEihCsfdno7AZDhLpDkGt2qn1HLCbalolN_jyk815nMjUA/
viewanalytics, 2020.

[10] Google Inc. Work sans - google fonts. https://fonts.google.com/specimen/Work+
Sans, 2020.

[11] Google Inc. Pt serif - google fonts. https://fonts.google.com/specimen/PT+Serif ,
2020.

[12] Bauer M. Deepnodes 3d node editor: Dokumentation. http://deep-nodes.de/
dokumentation, 2020.

[13] Lison P. An introduction to machine learning. http://folk.uio.no/plison/pdfs/
talks/machinelearning.pdf, 2012.

https://docs.blender.org/manual/en/2.79/editors/node_editor/introduction.html
https://docs.blender.org/manual/en/2.79/editors/node_editor/introduction.html
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/Maya-Basics/files/GUID-23277302-6665-465F-8579-9BC734228F69-htm.html
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/Maya-Basics/files/GUID-23277302-6665-465F-8579-9BC734228F69-htm.html
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/Maya-Basics/files/GUID-23277302-6665-465F-8579-9BC734228F69-htm.html
https://knowledge.autodesk.com/support/maya/learn-explore/caas/CloudHelp/cloudhelp/2019/ENU/Maya-Basics/files/GUID-23277302-6665-465F-8579-9BC734228F69-htm.html
https://www.opengl.org/about/#1
https://doc.qt.io/qt-5/qt3d-index.html
https://doc.qt.io/qt-5/qt3d-index.html
https://docs.google.com/forms/d/e/1FAIpQLSfVbEihCsfdno7AZDhLpDkGt2qn1HLCbalolN_jyk815nMjUA/viewanalytics
https://docs.google.com/forms/d/e/1FAIpQLSfVbEihCsfdno7AZDhLpDkGt2qn1HLCbalolN_jyk815nMjUA/viewanalytics
https://docs.google.com/forms/d/e/1FAIpQLSfVbEihCsfdno7AZDhLpDkGt2qn1HLCbalolN_jyk815nMjUA/viewanalytics
https://fonts.google.com/specimen/Work+Sans
https://fonts.google.com/specimen/Work+Sans
https://fonts.google.com/specimen/PT+Serif
http://deep-nodes.de/dokumentation
http://deep-nodes.de/dokumentation
http://folk.uio.no/plison/pdfs/talks/machinelearning.pdf
http://folk.uio.no/plison/pdfs/talks/machinelearning.pdf

	Abstract
	1 Introduction
	2 Nodes and Node-Trees
	3 Novelty of the approach
	4 Creation of the engine
	4.1 QT and PyQt
	4.2 OpenGL
	4.3 Qt3D
	4.4 Node Classes

	5 Design and User Experience
	5.1 Color spectrum
	5.2 Typography
	5.3 Icons and Logotype
	5.4 Graphical User Interface
	5.5 Key benefits of our human-computer interaction

	6 Perspective on future work
	6.1 Open tasks and questions
	6.2 Prospect

	References

